Content-Based Video Copy Detection

Savaş Özkan
MSc Thesis Defense, Electric-Electronics Engineering
Supervisor: Prof. Dr. Gözde Bozdağlı Akar
23/06/2014
Outline

• Motivation
 • Definition of the problem
 • What are the solutions?
 • Essential requisites.

• Introduction
 • Developed system;
 • Local feature extraction.
 • Indexing with quantization-based scheme.
 • Constituting geometric verification.
 • Ranking and Estimation of copy video.
Outline

- Feature Extraction
 - Motivation.
 - Methods;
 - Spatial Feature
 - Interest Point Detector (Hessian-Laplacian)
 - Descriptors (SIFT, Opponent SIFT, F-SIFT, SURF)
 - Spatio-Temporal Feature
 - Interest Point Detector and Tracking (Dense sampling + Optical Flow)
 - Descriptors (HoG, MBH)

- Quantization-based Indexing
 - What are the positive & negative aspects of the concept?
 - Methods;
 - Bag-of-Word (BoW)
 - Hamming Embedding (HE)
 - Product Quantization (PQ)
 - Extra Improvements
 - Inverted Index Structure and Term Frequency-Inverted Document Frequency (Tf-Idf).
Outline

• Geometric Verification
 • The reason of utilizing this scheme.
 • Methods;
 • Weak Geometric Consistency
 • For spatial domain;
 • Weak Geometric Consistency with Scale Distribution (S-WGC)
 • Weak Geometric Consistency with Translation Distribution (T-WGC)
 • For spatio-temporal domain;
 • Trajectory-Based Weak Geometric Consistency (ST-WGC) (Novel Concept)
 • Local Neighboring Relation Signature
 • Visual Group Binary Signature (VGBS) (Novel Concept)
Outline

• Experimental Results
 • TRECVID 2009 CBCD Dataset.
 • Performance metrics.
 • Ranking.
 • Performance results.
 • Discussion and Observations.

• Conclusion & Future Work
 • Novelities and contributions of this study.
 • Academic publications.
 • The objectives that we will investigate in future.
Motivation

• Definition of the problem
 • Copyright infringements have been increased with recent technological development;
 • effective video compression,
 • internet bandwidth availability for average user,
 • increasing popularity of social and video sharing websites.

• Considering the amount of circulated video data over internet, it is impossible to handle by human-based intervention.
Motivation

- Definition of the problem
 - Is it real hard to find copy video in an archive?

Youtube Search: Rise of the Planet of The Apes
Motivation

• Definition of the problem
 • Is it really hard to find copy video in an archive?
 • Actually, It is a bit more complicated.

Youtube Search: Rise of the Planet of The Apes
Motivation

• Definition of the problem

 • Hence, the primary goal of an automatic copy detection is to find the source of the query video with accurate time in a large reference archive.
Motivation

• What are the solutions?

 • There exist two complimentary approaches namely Digital Watermarking and Content-Based Copy Detection

 • Digital Watermarking [1];
 • The aim is to embed robust signatures into video content for future copy search.
 • However;
 • Signatures should be pre-modeled against deformations.
 • This increases storage size alongside of video data.
 • It cannot be applied on currently circulated videos.

Motivation

• What are the solutions?

 • Content-Based Copy Detection [1,2,3,...];
 • The aim is to obtain robust signatures from video leveraging visual, temporal and audio contents.

 • It consists two stages;
 • Offline stage; Robust and distinctive signatures are obtained and an archive is constructed for future search.
 • Online stage; Reference and query signatures are compared and decision is made about source of the query video.

Motivation

• Essential requisites.

 • Succeeding copy detection can be critized around three essential requisites;
 • *Low computational complexity and instance comparison.*
 • Reference archive is huge and user wants to see instance response in query-by-example cases.
 • *Low memory requirement.*
 • Large archive should be stored effective in order to run the developed system on average personal computer.

 • *High precise detection accuracy.*
 • High true detection rate with low false alarm.
Introduction

• Developed system;

 • Our developed system consists of four main steps;
 • *Local feature extraction.*
 • Content representation with local spatial and spatio-temporal descriptors.

 • *Indexing with quantization-based scheme.*
 • Indexing feature vector with small indices.

 • *Constituting geometric verification.*
 • Utilization of geometric consistency and geometric relation to refine scores.

 • *Ranking and Estimation of copy video.*
 • Searching query video in reference archive and making a judgment about video.
Introduction

• Developed system *(Ranking and Estimation of copy video)*
 • We have two test setups for spatial and spatio-temporal domains.

• For spatial domain;
Introduction

- Developed system (*Ranking and Estimation of copy video*)

- For spatio-temporal domain;
Feature Extraction

• Motivation.
 • Digital image consists of pixels and they are useless when we use them signly.

• There are two main representation schemes in literature;
 • Global Feature Representation [1,2];
 • It extracts couple of color, motion or texture information from whole an image as a single vector.
 • Ease to compute.
 • They are sensitive to geometric transformations like scale and orientation changes.

Feature Extraction

• Motivation.

 • Local Feature Representation [1,2];
 • Robust to occlusion clutter and geometric transformation in addition to illustration changes.
 • Since it represents local content, initially local stable regions should be found which we call interest points or interest regions.
 • Then, these local regions are represented using color, motion or texture information.

Feature Extraction

• Methods.

 • In this work, we have reserved feature extraction into two sections as;
 • Spatial Feature.
 • Spatio-Temporal Feature.
Feature Extraction

• Methods (*Spatial Feature*)

 • It can be distinguished into two as interest point detection and description.

 • Interest Point Detection;
 • Hessian Laplacian [1] interest point detector is utilized.

 • Local Descriptor;
 • SIFT [2], Opponent SIFT [3], Flip invariant SIFT [4] and SURF [5] descriptors are implemented.

Feature Extraction

- Methods (*Spatial Feature*)
 - Interest Point Detection (*Hessian Laplacian [1,2]*)
 - Hessian matrix measures the curvature on a point.
 - Scale-space is constructed with various gaussian kernels and hessian matrixes are computed.

\[
L(x, y, \sigma_k) = I(x, y) * G(x, y, \sigma_k)
\]

\[
H(x, y, \sigma_k) = \begin{bmatrix}
L_{xx}(x, y, \sigma_k) & L_{xy}(x, y, \sigma_k) \\
L_{yx}(x, y, \sigma_k) & L_{yy}(x, y, \sigma_k)
\end{bmatrix}
\]

Feature Extraction

- Methods (Spatial Feature)
 - Interest Point Detection (Hessian Laplacian [1,2])
 - If the point is greater value among neighbors and a threshold, it is selected as interest point.
 - In order to refine scale characteristic with more proper one, laplacian function is incorporated in scale-space.

\[
\text{Lap}(x, y, \sigma_k) = \sigma_k^2 \left[L_{xx}(x, y, \sigma_k) + L_{yy}(x, y, \sigma_k) \right]
\]

Feature Extraction

• Methods (*Spatial Feature*)

 • Local Descriptor
 • A circular region is defined using coordinate, scale and orientation characteristics of point.
Feature Extraction

- Methods (*Spatial Feature*)
 - Local Descriptor
 - A circular region is defined using coordinate, scale and orientation characteristics of point.
Feature Extraction

• Methods (Spatial Feature)

 • Local Descriptor (SIFT [1])

 • Orientation assignment: Dominant gradient orientation in circular region is accepted as the orientation characteristic.

 • Keypoint descriptor: Gradient magnitudes are accumulated as a histogram according to their location and orientation parameters.

 • Since sub-region size is 4×4 and length of orientation histogram is 8, final vector dimension is 128.

Feature Extraction

• Methods (Spatial Feature)

 • Local Descriptor (Opponent SIFT [1])
 • Follows similar steps as in SIFT descriptor.
 • Differently, instead of grayscale image, color content is employed.
 • O_3 intensity value in grayscale image.
 • O_1 and O_2 contain color information.
 • These color channels are invariant to illumination changes.

 \[
 \begin{pmatrix}
 O_1 \\
 O_2 \\
 O_3
 \end{pmatrix} = \begin{pmatrix}
 \frac{R - G}{\sqrt{2}} \\
 \frac{R + G - 2B}{\sqrt{6}} \\
 \frac{R + G + B}{\sqrt{3}}
 \end{pmatrix}
 \]

 • Final vector dimension is equal to $3 \times 128 = 384$.

Feature Extraction

• Methods (Spatial Feature)

 • Local Descriptor (F-SIFT [1])
 • SIFT descriptor is invariant to scale and orientation changes, but not to a flip transformation.
 • The aim is to make SIFT descriptor robust against flip transformation preserving its originality.
 • Dominant curl computation [1] is employed.

Feature Extraction

• Methods (Spatial Feature)

 • Local Descriptor (F-SIFT [1])
 • C parameter’s sign determines possible direction of concatenation in clockwise or counter clockwise manner.
 • According to sign, region is flip or not and SIFT descriptor is computed.

\[
C = \sum_{(x,y) \in I} \left(\sqrt{\frac{\partial I(x,y)^2}{\partial x} + \frac{\partial I(x,y)^2}{\partial y}} \right) \times \cos(\theta_r(x,y))
\]

\[
\frac{\partial I(x,y)}{\partial x} = I(x - 1, y) - I(x + 1, y)
\]

\[
\frac{\partial (x,y)}{\partial y} = I(x, y - 1) - I(x, y + 1)
\]

\[
\theta_r(x,y) = \theta(x,y) - \tan^{-1}\left(\frac{y}{x}\right)
\]

\[
\theta(x,y) = \tan^{-1}\left(\frac{I(x, y - 1) - I(x, y + 1)}{I(x - 1, y) - I(x + 1, y)}\right)
\]

Feature Extraction

• Methods (*Spatial Feature*)

 • Local Descriptor (*SURF [1]*)
 • Orientation assignment: Haar response is calculated in x and y directions and similarly dominant orientation is accepted.

 • Keypoint descriptor: Horizontal d_x and vertical d_y wavelet responses are summed up and a vector $v = (\Sigma d_x, \Sigma d_y, \Sigma|d_x|, \Sigma|d_y|)$.

 • To insert to localization information, region is divided into 4×4 sub-regions. Final vector dimension is 64.

Feature Extraction

• Methods (*Spatio-Temporal Feature*)
 • Joint usage of spatial and temporal contents would have more distinctive information.

 • It can be distinguished into two parts as;
 • Interest point detection + Tracking
 • Description.

 • Interest Point Detection+Tracking;
 • Densely sampled points are tracked through in time with optical flow [1].

 • Local Descriptor;
 • Histogram of Orientated Gradient (HoG) [2] and Motion Boundary Histogram (MBH) [1,3]

Feature Extraction

Methods (Spatio-Temporal Feature)

- Interest Point Detection+Tracking;
 - Densely sampled trajectory estimation [1] can capture the foreground motion with high precision.
 - Thus, it increases the distinctive power of the representation.

- Candidate points are sampled on frames with different scales.
- Points should be stable for more correct tracking.
- The points on homogeneous areas are eliminated [2].

Feature Extraction

• Methods (Spatio-Temporal Feature)

 • Interest Point Detection+Tracking;
 • Farneback optical motion field [1] is computed.
 • Reduce to sensitivity of motion, 3×3 median filter is applied.
 • Since static scenes do not contain motion information, the trajectories with small spatial variations are eliminated.

 • At the end; $N \times N \times L$ space-time volume is estimated.
 • To insert location information, spatial and time domains are partitioned into $n_{xy} = 2$ and $n_t = 2$ respectively.

Feature Extraction

- Methods (*Spatio-Temporal Feature*)

 - Local Descriptor (*Histogram of Orientated Gradient (HoG)*) [1]
 - Firstly, proposed for human recognition.
 - Similar to SIFT, 8 bin orientation histogram is weighted with gradient magnitudes.
 - Final vector dimension is $2 \times 2 \times 2 \times 8 = 64$.

Feature Extraction

• Methods \((\text{Spatio}-\text{Temporal Feature}) \)

 • Local Descriptor \((\text{Motion Boundary Histogram (MBH)}) \) [1,2]
 • Motion on frame, consists of foreground, background and camera motions.
 • Camera motion reduces discriminative power of the scene.
 • Similar idea in gradient estimation, vertical and horizontal derivatives are computed in \(3 \times 3 \) window and 8 bin histograms are computed for each axis.
 • Final vector dimension is \(2 \times 2 \times 2 \times 2 \times 8 = 128 \).

Quantization-based Indexing

- What are the positive & negative aspects of the concept?
 - Comparing local descriptors according to their feature vectors is impossible for particularly large database.
 - Idea is to map a feature vector into small indices.

- Pos;
 - Enables to compare feature vectors instantly.
 - Ease to implement. (No complicated mathematical transformation.)

- Neg;
 - Since this is an unsupervised problem, clustering size affects trade-off.
 - Loss some information about feature vector during mapping.
Quantization-based Indexing

- Methods.

 - In this work, we have investigate three methods as;
 - Bag-of-word [1]
 - Hamming Embedding [2]
 - Product Quantization [3]

Quantization-based Indexing

• Methods (*Bag-of-word* [1])
 • Firstly, unveiled for text retrieval.
 • Each feature vector is quantized on a pre-clustered space (*visual codebook*) according to closest distance to cluster centers.

Quantization-based Indexing

- Methods (*Bag-of-word* [1])

 - Since there is single index value $q_c(v)$, similarity score between query and reference signatures is equal to;

 $$s_{Bow}(v^r, v^q) = \begin{cases} 1.0, & \text{if } q_c(v^r) == q_c(v^q) \\ 0.0, & \text{otherwise} \end{cases}$$

Quantization-based Indexing

• Methods (*Hamming Embedding* [1])
 • Cluster size is a critical parameter;
 • For small value, residing noisy version of vector into same cluster is high, however irrelevant vector can also have same cluster id.
 • Conversely, for high value, precise cluster id assignment can be made, but possibility of assigning noisy version of a vector is low.

 • In this method, location of a vector inside cluster center is encoded with additional binary signature.

Quantization-based Indexing

• Methods (*Hamming Embedding* [1])

 • Besides fast comparability, the beauty of this binary signature is translation between sub-regions can be permitted with hamming distance.

\[H_{he}(v^r, v^q) = \sum_{i=1}^{d_b} |b_i(v^r) - b_i(v^q)| \]

 • In order to compute this binary signature, visual codebook should be updated.

Quantization-based Indexing

- Methods (*Hamming Embedding* [1])

 - Learning stage;
 - A $d \times d_b$ projection matrix P is generated. (Random Gaussian + QR factorization)
 - Each sample in corpus projected using P.
 - Median values $\tau_{q_c(v),i}$ where $i = 1 \ldots d_b$ for each cluster are stored.

 - Assigning stage;
 - Assign closest center $q_c(v)$.
 - Project feature vector to $z = z_{q_c(v),1}, z_{q_c(v),2}, \ldots, z_{q_c(v),d_b}$.
 - Compute binary by comparing median values.

\[
b_i(v) = \begin{cases}
1, & \text{if } z_{q_c(v),i} > \tau_{q_c(v),i} \\
0, & \text{otherwise}
\end{cases}
\]

Quantization-based Indexing

- Methods (*Hamming Embedding* [1])

- For similarity score;

\[
s_{HE}(v^r, v^q) = \begin{cases}
1.0 - \frac{H_{he}(v^r, v^q)}{h_t}, & \text{if } q_c(v^r) = q_c(v^q) \\
0.0, & \text{if } H_{he}(v^r, v^q) < h_t \\
\text{otherwise} &
\end{cases}
\]

Quantization-based Indexing

- **Methods** *(Product Quantization [1])*
 - High cluster size increases bit rate per component of a vector.

 - The purpose of this method is to increase bit rate per component of a vector by splitting the vector into \(m \) uniform sub-vectors.

 - Then, for each sub-vector, quantization step is done with cluster size \(K^* \)

 \[
 \{v_1, v_2, \ldots, v_m\} \rightarrow \{q_1(v_1), q_2(v_2), \ldots, q_m(v_m)\}
 \]

 - Final approximate cluster size is \((K^*)^m\).

Quantization-based Indexing

• Methods (*Product Quantization* [1])

 • In image retrieval, similar to hamming embedding, a small code is added that encodes residual error.

 \[r(v) = v - q_c(v) \]

 • This residual error is quantized with product quantizer;

 \[\hat{v} = q_c(v) - q_p(v - q_c(v)) \]

Quantization-based Indexing

- Methods (*Product Quantization* [1])

 - For similarity score, we apply two constraints;
 - Quantized indices should be equal. \(q_c(v^r) = q_c(v^q) \)
 - Order of quantized query sub-residue \(q_m(r(v^q_m)) \) in nearest neighbor of quantized reference sub-residue \(q_m(r(v^r_m)) \) should be up to a threshold \(\tau_{pq} \).

\[
s_{HE}(v^r, v^q) = \frac{1}{M} \sum_{1\leq m \leq M} 1.0 - \frac{NN_m(q_m(r(v^r_m))) - q_m(r(v^q_m)))}{\tau_{pq}}
\]

Quantization-based Indexing

• Extra Improvements

 • Inverted Index Structure [1]
 • Indexing descriptors according to their indices.
 • This allows us to compare the descriptors with same indices and reduce search space.

 • Term-Frequency – Inverted Document Frequency [1]
 • Descriptors are weighted according to their occurrence frequencies.
 • More frequent ones have less information, less frequent ones have more information.

Geometric Verification

• The reason of utilizing this scheme.

 • Joint usage of local descriptor and quantization-based indexing discards geometric consistency among interest points.

• Frequently, it can be reintroduced with;

 • adding a post-processing stage that eliminates outliers. (Weak geometric consistency)

 • encoding local neighboring relation of interest points by a signature. (Local Neighbor Relation.)
Geometric Verification

• Methods (Weak geometric consistency [1,2])

 • Simply, this is a filtering stage to refine true local matches according to dominant geometric transformation.

 • RANSAC [3] is the most famous one. But computational complexity is too high.

 • Simpler algorithm is proposed.
 • Instead of verifying exact geometric transformation, an approximate geometric characteristic can be obtained by parameter differences.

Geometric Verification

• Methods (*Weak geometric consistency*)

 • For spatial domain;
 • Weak geometric consistency with scale distribution [1].
 • Weak geometric consistency with translation distribution [2].

 • For spatio-temporal domain;
 • Trajectory-based weak geometric consistency (*Novel Concept*)

Geometric Verification

- Methods (*Weak geometric consistency*)

 - For spatial domain;
 - To fit a geometric model on local descriptors, scale, orientation and translation parameters can be used.
 - Quantized orientation parameters for local query and reference points should be identical.

\[
q_{\theta^r} = \frac{\theta^r}{q_{s_{step}}}
\]

\[
q_{\theta^r} = = q_{\theta^q}
\]
Geometric Verification

- Methods (*Weak geometric consistency*)
 - For spatial domain (*Weak geometric consistency with scale distribution* [1])
 - The assumption is when an image undergoes rotation and scale changes, local descriptors on this image affect same amount.
 - The geometric consistency can be built on seeking a global distributions on scale and rotation differences.
 - A scale difference histogram is constructed and peak value of histogram is accepted as scale characteristic of two frames.

\[
q_{sr} = \log_2 s^r \\
\tilde{s} = q_{sr} - q_{sq}
\]

Geometric Verification

• Methods (Weak geometric consistency)

 • For spatial domain (Weak geometric consistency with translation distribution [1])

 • Translation has more discriminative geometric clues compare to scale.
 • Manhattan distance (Decrease complexity)
 • In order to investigate joint characteristic in scale and translation changes, 2D distribution histogram is utilized.

\[
\begin{bmatrix}
 x^q \\
 y^q
\end{bmatrix} = s \times \begin{bmatrix}
 \cos \theta \\
 -\sin \theta
\end{bmatrix} \times \begin{bmatrix}
 x^r \\
 y^r
\end{bmatrix} + \begin{bmatrix}
 t_x \\
 t_y
\end{bmatrix}
\]

\[
\tilde{s} = 2(q_x - x^q) \quad \begin{bmatrix}
 \tilde{x}^q \\
 \tilde{y}^q
\end{bmatrix} = \tilde{s} \times \begin{bmatrix}
 x^r \\
 y^r
\end{bmatrix}
\]

\[
\tilde{c} = |x^q - \tilde{x}^q| + |y^q - \tilde{y}^q|
\]

Geometric Verification

• Methods (*Weak geometric consistency*)

 • For spatial domain (*Weak geometric consistency with translation distribution* [1])

 • Unlike scale distribution, translation distribution is not invariant to flip transformation.
 • Vertical flip deforms x coordinate as $width - x$.[2]

 $\begin{bmatrix} width - \bar{x}^q \\ y^q \end{bmatrix} = \hat{s} \times \begin{bmatrix} \bar{x}^r \\ y^r \end{bmatrix}$

 $t = |x^q + \hat{s} \times x^r - width| + |y^q - \hat{s} \times y^r|$

 $t = |x^q + \hat{s} \times x^r| + |y^q - \hat{s} \times y^r|$

 • Due to the disjoint relation of original and flip versions, we have utilized two 2D histograms.

Geometric Verification

• Methods (*Weak geometric consistency*)

 • For spatio-temporal domain [1] (*Trajectory-based weak geometric consistency*)

 (Novel Concept)

 • Trajectories are computed on consecutive frames.
 • Spatial variations and means in time can be employed as geometric clues.

 • Proposed method considers two relations
 • Spatial variations
 • Spatial means

\[
\begin{align*}
\mu_x &= \frac{1}{L} \sum_{i=1}^{L} x_i \\
\mu_y &= \frac{1}{L} \sum_{i=1}^{L} y_i \\
\sigma_x &= \frac{1}{L} \sum_{i=1}^{L} (x_i - \mu_x)^2 \\
\sigma_y &= \frac{1}{L} \sum_{i=1}^{L} (y_i - \mu_y)^2
\end{align*}
\]

Geometric Verification

• Methods (Weak geometric consistency)

 • For spatio-temporal domain [1] (Trajectory-based weak geometric consistency)
 (Novel Concept)

 • Spatial variations;
 • If pairs are identical, spatial variations should be roughly proportional with scale difference.
 • Manhattan distance (Decrease complexity.)

\[
\sigma_{x,y}^q - \bar{s} \times \sigma_{x,y}^q < \tau_\sigma
\]
\[
\bar{s} = \sqrt{2} \times (s^q - s^r)
\]
\[
\sigma_{x,y}^r = \sigma_x^r + \sigma_y^r
\]
\[
\sigma_{x,y}^q = \sigma_x^q + \sigma_y^q
\]

Geometric Verification

• Methods (*Weak geometric consistency*)

 • For spatio-temporal domain [1] (*Trajectory-based weak geometric consistency*)
 (Novel Concept)

 • Spatial means;
 • Geometric transformation is reintroduced for spatial means for reference and query.

 • Manhattan distance (Decrease complexity.)

 • 2D distribution histogram is utilized for translation mean and scale differences.

\[
\begin{align*}
\begin{bmatrix}
\mu_x^q \\
\mu_y^q
\end{bmatrix} &= \hat{s} \times \begin{bmatrix}
\mu_x^r \\
\mu_y^r
\end{bmatrix} + \begin{bmatrix}
t_x \\
t_y
\end{bmatrix} \\
\hat{s} &= \sqrt{2} \times (s^q - s^n) \\
t_{\mu} &= |\mu_{x,y}^q - \hat{s} \times \mu_{x,y}^r| \\
\mu_{x,y}^q &= \mu_x^q + \mu_y^q \\
\mu_{x,y}^r &= \mu_x^r + \mu_y^r
\end{align*}
\]

Geometric Verification

• Methods (*Local Neighboring Relation*)

 • The aim is to encode a geometric signature using neighboring relation among local interest points.

 • This should be robust and ease to compare for large dataset.

• Visual Group Binary Signature [1] (*Novel Concept*)
 • It merely checks existent or non-existent of interest points in neighborhood area and generates a binary string.
 • Instead of complex voting scheme, similarity of local descriptors can be obtain by bitwise comparisons.

Geometric Verification

- Methods (Local Neighboring Relation)

 - Visual Group Binary Signature [1] (Novel Concept)
 - Circular region is defined around a central point.
 - Circular region is divided into sub-partitions \(G_{i,j}^k \) in scale and angular domains.
 - Binary signature is computed:
 \[
 b_{vg}^k = \{ b_p(G_{1,1}^k), \ldots, b_p(G_{N_{\delta \theta}, N_{\delta s}}^k) \}
 \]

 \[
 b_p(G_{i,j}^k) = \begin{cases}
 1 & \text{if any interest point exist in } G_{i,j}^k \\
 0 & \text{otherwise}
 \end{cases}
 \]

 - Similarity score:
 \[
 s_{vg}(b_{vg}^k, b_{vg}^l) = \frac{1}{N_{\text{norm}}} \sum_{1 \leq i \leq N_{\delta \theta}} \sum_{1 \leq j \leq N_{\delta s}} b_p(G_{i,j}^k) \times b_p(G_{i,j}^l)
 \]

Experimental Results

- **TRECVID 2009 CBCD Dataset [1].**
 - Consists of 400 hours reference videos and 1407 query videos.
 - 937 query videos are in this reference videos.

- 7 types of attack models
 - T2: Picture-in-picture.
 - T3: Insertion of pattern.
 - T4: Strong re-encoding.
 - T5: Change of gamma.
 - T6: Decrease in quality.
 - T8: Post processing.
 - T10: Combination of 5 attacks.

Experimental Results

• Performance metrics.
 • Recall, precision and f1-score are calculated.

\[
\text{recall} = \frac{|\{\text{relevant document}\} \cap \{\text{retrieved document}\}|}{|\{\text{relevant document}\}|}
\]

\[
\text{precision} = \frac{|\{\text{relevant document}\} \cap \{\text{retrieved document}\}|}{|\{\text{retrieved document}\}|}
\]

\[
\text{f1score} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}
\]
Experimental Results

- **Ranking**
 - Query video is searched in reference archive using their coherent content characteristics.

- Reliability score between two videos is proportional with number of interest point correspondences on videos.

- Since videos are represented with sampled frames, similarity computed one-by-one frame comparisons.
Experimental Results

• Ranking

 • The ranking procedure is;
 • Initiate a score vector whose size is equal to reference video duration.
 • For each query frame, compute similarity score on each reference frame.
 • Add similarity score to corresponding bin of score vector.
 • Maximum value indicates reference video with time location.

 • This procedure is repeated for all reference videos.

 • In order to say, query video is copy, first highest score must be at least twice of second highest score among score vectors.
Experimental Results

• Performance results.
 • We have tested performances of several combinations around local descriptors.

 • For each spatial domain local descriptor;
 • Bag-of-word.
 • Hamming Embedding.
 • Product Quantization.
 • Visual Group Binary Signature.
 • Weak Geometric Consistency with Scale Distribution.
 • Weak Geometric Consistency with Translation Distribution.

 • For each spatio-temporal domain local descriptor;
 • Bag-of-word
 • Hamming Embedding
 • Product Quantization
 • Trajectory-based Weak Geometric Consistency.
Experimental Results

- Performance results.
 - From the results, combination of Flip-invariant SIFT, Hamming Embedding, Visual Group Binary Signature and Weak Geometric Consistency with Translation Distribution yields overall best results in all performance metrics.

<table>
<thead>
<tr>
<th>Baseline</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T8</th>
<th>T10</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoW+SWGC</td>
<td>0.4029</td>
<td>0.7761</td>
<td>0.5373</td>
<td>0.8208</td>
<td>0.8731</td>
<td>0.4552</td>
<td>0.3731</td>
<td>0.6055</td>
</tr>
<tr>
<td>BoW+TWGC</td>
<td>0.6044</td>
<td>0.8955</td>
<td>0.7910</td>
<td>0.9253</td>
<td>0.9701</td>
<td>0.7248</td>
<td>0.6119</td>
<td>0.7889</td>
</tr>
<tr>
<td>BoW+SWGC+VGBS</td>
<td>0.4850</td>
<td>0.8805</td>
<td>0.6940</td>
<td>0.8731</td>
<td>0.9477</td>
<td>0.5298</td>
<td>0.4925</td>
<td>0.7004</td>
</tr>
<tr>
<td>BoW+TWGC+VGBS</td>
<td>0.6044</td>
<td>0.9253</td>
<td>0.7985</td>
<td>0.9402</td>
<td>0.9776</td>
<td>0.7248</td>
<td>0.6194</td>
<td>0.7985</td>
</tr>
<tr>
<td>HE+SWGC</td>
<td>0.5970</td>
<td>0.8880</td>
<td>0.7238</td>
<td>0.9029</td>
<td>0.9552</td>
<td>0.5970</td>
<td>0.5597</td>
<td>0.7462</td>
</tr>
<tr>
<td>HE+TWGC</td>
<td>0.7313</td>
<td>0.9328</td>
<td>0.8582</td>
<td>0.9552</td>
<td>0.9850</td>
<td>0.8059</td>
<td>0.6791</td>
<td>0.8496</td>
</tr>
<tr>
<td>HE+SWGC+VGBS</td>
<td>0.6791</td>
<td>0.9402</td>
<td>0.8059</td>
<td>0.9477</td>
<td>0.9850</td>
<td>0.7014</td>
<td>0.6343</td>
<td>0.8134</td>
</tr>
<tr>
<td>HE+TWGC+VGBS</td>
<td>0.7313</td>
<td>0.9552</td>
<td>0.8432</td>
<td>0.9552</td>
<td>0.9850</td>
<td>0.8059</td>
<td>0.6865</td>
<td>0.8516</td>
</tr>
<tr>
<td>PQ+SWGC</td>
<td>0.6417</td>
<td>0.9104</td>
<td>0.7388</td>
<td>0.9029</td>
<td>0.9477</td>
<td>0.5820</td>
<td>0.5149</td>
<td>0.7484</td>
</tr>
<tr>
<td>PQ+TWGC</td>
<td>0.6940</td>
<td>0.9328</td>
<td>0.8432</td>
<td>0.9477</td>
<td>0.9776</td>
<td>0.7611</td>
<td>0.6492</td>
<td>0.8294</td>
</tr>
<tr>
<td>PQ+SWGC+VGBS</td>
<td>0.6791</td>
<td>0.9253</td>
<td>0.7910</td>
<td>0.9253</td>
<td>0.9701</td>
<td>0.6343</td>
<td>0.5671</td>
<td>0.7846</td>
</tr>
<tr>
<td>PQ+TWGC+VGBS</td>
<td>0.7014</td>
<td>0.9328</td>
<td>0.8358</td>
<td>0.9552</td>
<td>0.9776</td>
<td>0.7761</td>
<td>0.6492</td>
<td>0.8326</td>
</tr>
</tbody>
</table>
Experimental Results

<table>
<thead>
<tr>
<th>Baseline</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T8</th>
<th>T10</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoW+SWGC</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9863</td>
<td>0.9909</td>
<td>0.9915</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9947</td>
</tr>
<tr>
<td>BoW+TWGC</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9906</td>
<td>0.992</td>
<td>0.9923</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9959</td>
</tr>
<tr>
<td>BoW+SWGC+VGBS</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9893</td>
<td>0.9915</td>
<td>0.9921</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9954</td>
</tr>
<tr>
<td>BoW+TWGC+VGBS</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9907</td>
<td>0.9921</td>
<td>0.9924</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9959</td>
</tr>
<tr>
<td>HE+SWGC</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9897</td>
<td>0.9918</td>
<td>0.9922</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9957</td>
</tr>
<tr>
<td>HE+TWGC</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9913</td>
<td>0.9922</td>
<td>0.9924</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9962</td>
</tr>
<tr>
<td>HE+SWGC+VGBS</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9908</td>
<td>0.9921</td>
<td>0.9924</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9960</td>
</tr>
<tr>
<td>HE+TWGC+VGBS</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9912</td>
<td>0.9922</td>
<td>0.9924</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9962</td>
</tr>
<tr>
<td>PQ+SWGC</td>
<td>1.0</td>
<td>1.0</td>
<td>0.99</td>
<td>0.9918</td>
<td>0.9921</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9957</td>
</tr>
<tr>
<td>PQ+TWGC</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9912</td>
<td>0.9921</td>
<td>0.9924</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9961</td>
</tr>
<tr>
<td>PQ+SWGC+VGBS</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9906</td>
<td>0.992</td>
<td>0.9923</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9959</td>
</tr>
<tr>
<td>PQ+TWGC+VGBS</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9911</td>
<td>0.9922</td>
<td>0.9924</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9961</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baseline</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T8</th>
<th>T10</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoW+SWGC</td>
<td>0.5744</td>
<td>0.8739</td>
<td>0.6956</td>
<td>0.8979</td>
<td>0.9285</td>
<td>0.6256</td>
<td>0.5434</td>
<td>0.7581</td>
</tr>
<tr>
<td>BoW+TWGC</td>
<td>0.7534</td>
<td>0.9444</td>
<td>0.8796</td>
<td>0.9575</td>
<td>0.9811</td>
<td>0.8938</td>
<td>0.7592</td>
<td>0.8804</td>
</tr>
<tr>
<td>BoW+SWGC+VGBS</td>
<td>0.6332</td>
<td>0.9365</td>
<td>0.8157</td>
<td>0.9285</td>
<td>0.9694</td>
<td>0.6926</td>
<td>0.66</td>
<td>0.8222</td>
</tr>
<tr>
<td>BoW+TWGC+VGBS</td>
<td>0.7534</td>
<td>0.9612</td>
<td>0.8842</td>
<td>0.9655</td>
<td>0.9849</td>
<td>0.8404</td>
<td>0.7649</td>
<td>0.8833</td>
</tr>
<tr>
<td>HE+SWGC</td>
<td>0.7476</td>
<td>0.9407</td>
<td>0.8362</td>
<td>0.9453</td>
<td>0.9733</td>
<td>0.7476</td>
<td>0.7177</td>
<td>0.8531</td>
</tr>
<tr>
<td>HE+TWGC</td>
<td>0.8448</td>
<td>0.9652</td>
<td>0.92</td>
<td>0.9733</td>
<td>0.9887</td>
<td>0.8825</td>
<td>0.8088</td>
<td>0.9171</td>
</tr>
<tr>
<td>HE+SWGC+VGBS</td>
<td>0.8088</td>
<td>0.9692</td>
<td>0.8888</td>
<td>0.9694</td>
<td>0.9887</td>
<td>0.8245</td>
<td>0.7762</td>
<td>0.8955</td>
</tr>
<tr>
<td>HE+TWGC+VGBS</td>
<td>0.8448</td>
<td>0.9770</td>
<td>0.9112</td>
<td>0.9733</td>
<td>0.9887</td>
<td>0.8825</td>
<td>0.8141</td>
<td>0.9182</td>
</tr>
<tr>
<td>PQ+SWGC</td>
<td>0.7818</td>
<td>0.9531</td>
<td>0.8461</td>
<td>0.9453</td>
<td>0.9694</td>
<td>0.7358</td>
<td>0.6798</td>
<td>0.8545</td>
</tr>
<tr>
<td>PQ+TWGC</td>
<td>0.8193</td>
<td>0.9652</td>
<td>0.9112</td>
<td>0.9694</td>
<td>0.9849</td>
<td>0.8644</td>
<td>0.7873</td>
<td>0.9051</td>
</tr>
<tr>
<td>PQ+SWGC+VGBS</td>
<td>0.8088</td>
<td>0.9612</td>
<td>0.8706</td>
<td>0.9575</td>
<td>0.9811</td>
<td>0.7762</td>
<td>0.7238</td>
<td>0.8777</td>
</tr>
<tr>
<td>PQ+TWGC+VGBS</td>
<td>0.8245</td>
<td>0.9652</td>
<td>0.9068</td>
<td>0.9733</td>
<td>0.9849</td>
<td>0.8739</td>
<td>0.7872</td>
<td>0.9070</td>
</tr>
</tbody>
</table>
Experimental Results

- Performance results.
 - Comparison time for spatial and spatio-temporal descriptor models.
 - Time in second yields for comparing 1 second query video with 100 hours of reference database.

<table>
<thead>
<tr>
<th>Feature Model</th>
<th>BoW+SWGC</th>
<th>BoW+TWGC</th>
<th>BoW+SWGC +VGBS</th>
<th>BoW+TWGC +VGBS</th>
<th>HE+SWGC</th>
<th>HE+TWGC</th>
<th>HE+SWGC +VGBS</th>
<th>HE+TWGC +VGBS</th>
<th>PQ+SWGC</th>
<th>PQ+TWGC</th>
<th>PQ+SWGC +VGBS</th>
<th>PQ+TWGC +VGBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial</td>
<td>0.04 sn</td>
<td>0.1 sn</td>
<td>0.06 sn</td>
<td>0.12 sn</td>
<td>0.05 sn</td>
<td>0.11 sn</td>
<td>0.07 sn</td>
<td>0.13 sn</td>
<td>0.07 sn</td>
<td>0.12 sn</td>
<td>0.09 sn</td>
<td>0.14 sn</td>
</tr>
<tr>
<td>Spatio-Temporal</td>
<td>0.01 sn</td>
<td>0.05 sn</td>
<td>0.02 sn</td>
<td>0.07 sn</td>
<td>0.03 sn</td>
<td>0.09 sn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Results

- Discussion and Observations.
 - Hamming embedding and product quantization give better results compare to bag-of-word.
 - Computing similarity score in local content signature with soft-assignment increases detection accuracy.
 - Even if Opponent SIFT is more discriminative than any other descriptors, it gives the worse results due to the its higher dimensionality.
 - Flip-invariant SIFT descriptor gives worse result on re-encoding attacks compare to classic SIFT descriptors.
Experimental Results

• Discussion and Observations.

 • Elimination of static trajectories decreases the performance.

 • Spatio-temporal with motion content fails on re-encoding attacks.

 • Utilization of geometric consistency improves the accuracy for both spatial and spatio-temporal domains.

 • Comparison time for even the slowest combination is in acceptable range.

 • Purely utilization of visual group binary signature with scale distribution geometric consistency yields compatible results over complex results like weak geometric consistency with translation distribution.
Conclusion & Future Work

• Novelities and contributions of this study.

 • Within the scope of this thesis, we have proposed an overall content-based video copy detection that consists of three main stages, feature extraction, indexing and geometric consistency.

 • Firstly,
 • Densely sampled feature model are deployed on this problem.
 • Soft-assignments instead of hardcoded similarity score for product quantization.
 • A novel compact and effective local geometric signature is proposed.
 • A novel trajectory-based weak geometric consistency for spatio-temporal descriptors.
 • A novel scheme for combination of flip invariant and original weak geometric consistency for translation distribution.

 • Best of all, we have reached several important observations which will sight in future research.
Conclusion & Future Work

• Academic publications

Questions?

• Thank you for your attention.